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Abstract.

The mass of the top (t) quark has been measured in the lepton+jets channel of

tt �nal states studied by the D� and CDF experiments at Fermilab using data from

Run I of the Tevatron pp collider. The result published by D� is 173.3 � 5.6(stat)

� 5.5(syst) GeV. We present a di�erent method to perform this measurement using

the existing data. The new technique uses all available kinematic information in an

event, and provides a signi�cantly smaller statistical uncertainty than achieved in

previous analyses. The preliminary results presented in this thesis indicate a statisti-

cal uncertainty for the extracted mass of the top quark of 3.5 GeV, which represents

a sigini�cant improvement over the previous value of 5.6 GeV. The method of anal-

ysis is very general, and may be particularly useful in situations where there is a

small signal and a large background.
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Chapter 1

Introduction.

In this chapter we present a brief introduction to the broad ideas that underly this

work.

1.1 The Experiment.

The experiment described in this thesis is based on studies performed at a particle

accelerator called the Tevatron. It is located in the western suburbs of Chicago at

the Fermi National Accelerator Laboratory.

The Tevatron is a wondrous machine. It consists of a ring with a radius of about

1 km, where protons and antiprotons circulate in opposite directions. Protons are

the familiar components of the atomic nucleus, and antiprotons are their antimatter

1



counterparts.

Protons and antiprotons produce collisions inside the Tevatron at two large detec-

tors, each operated by � 400 physicists, who study these collisions. This dissertation

is based on research performed at the D� experiment, one of these collisions.

Protons and antiprotons are not quite elementary particles. They contain quarks

that are held together by gluons. Quarks and gluons are the fundamental con-

stituents, and, up to now, there is no evidence that they have additional substruc-

ture. This means that when protons and antiprotons collide, all their components

(quarks and gluons) can interact.

As we currently understand, there are six kinds of quarks, and each of these

quarks has its corresponding antimatter-counterpart antiquark. The six quarks are

called up (u), down (d), charm (c), strange (s), top (t), and bottom (b). These

quarks have baryon numbers of 1
3
, and electric charges of +2

3
(for u, c and t) and

�1
3
(for d, s and b). Protons are formed of one d and two u quarks, and all the

atomic nuclei are formed from these \�rst generation" kinds of quarks. Antiprotons

are formed from anti-u and anti-d (usually written as u and d).

When two constituent particles interact, they can often produce di�erent kinds

of particles. For example, a quark and its antiquark can annihilate to produce a

gluon, which can in turn break up into a di�erent quark-antiquark pair, as depicted

in Figure 1.1. In this way, one can produce di�erent and new kinds of particles from

2



Figure 1.1: Quark and an antiquark can annihilate to produce a gluon, which in
turn breaks up into a di�erent quark-antiquark pair, in this case a tt pair.

proton-antiproton collisions.

1.2 Production and Detection of the Top Quark.

The production of top quarks is achieved mainly as sketched in Figure 1.1. A quark

constituent of the proton and an antiquark constituent of an antiproton can interact

to produce a gluon, which in turn produces a t and t. Because of conservation of

electric (and other kinds of) charge, one can usually produce a quark only with its

corresponding antiquark (and no other antiquark). Starting from a gluon, one could

not produce a pair such as a t and a c.

Once a tt pair is produced, a top quark can be observed in a detector through its

decay into a b quark and a W boson. The electrically charged W boson is a particle

that can decay into a qq0 pair (q and q0 representing di�erent generic quarks), or

3



into a charged lepton and a neutrino.

A neutrino is also a fundamental particle (a \lepton"), with no electric charge,

that interacts very weakly, and escapes the detector without being observed. There

are three types of charged leptons, one of them is the common electron, and the

other two are the muon (�) and the � .

The signature for a t in the �nal state is therefore a b quark and a W , where

the W decays either into two quarks, or into a charged lepton and a particle that

escapes the detector (neutrino).

The D� detector was designed primarily to observe quarks and the two lighter

kinds of leptons (electrons and muons). The neutrino is \observed" as a missing

piece in the collision.

1.3 Measurement of the Mass of the Top Quark.

By measuring the energies of the decay products of the top quark, one can determine

its rest (or invariant) mass. If the top quark were produced with no kinetic energy (at

rest), the sum of the energies of its decay products would equal the mass of the top

quark. Unfortunately, this is not the general situation, and certain transformations

are needed to account for the movement of the top quark at production, but this

involves purely well understood relativistic kinematics.

4



D� and the other major Tevatron experiment (CDF) were able to measure the

top quark mass with excellent precision. This was very important because the mass

of the top quark turned out to be 30 times larger than the next heaviest quark,

the b quark. The uncertainty in this measurement was in part due to the small

number of tt pairs produced at the Tevatron. Of the order of 30 good candidates

were observed by D�. This work is intended to maximize the use of information

in this small sample of events, and thereby reduce the uncertainty on the mass

measurement.

5



Chapter 2

Top Quark

As mentioned in the Introduction, there are six quarks known in nature. The quarks

are arranged in three pairs of generations, as shown in Figure 2.1. Each member of

a pair can be transformed into its partner via the charged-current weak interaction

carried by the W boson. Together with the six known leptons (electron, muon, �

and their associated neutrinos, also in Figure 2.1), the six quarks constitute all of the

matter in the universe (with the possible exception of the mysterious \dark matter"

and \dark energy"). It is therefore essential that we understand the properties of

the leptons and quarks in detail.

The top quark was discovered in 1995 at Fermilab by the CDF [1] and D� [2]

experiments using the Tevatron accelerator, a proton antiproton collider with center

of mass energy
p
s = 1:8 TeV (the Tevatron is discussed in Chapter 3).
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Quarks:

�
u
d

� �
c
s

� �
t
b

�

Leptons:

�
�e
e�

� �
��
��

� �
��
��

�

Figure 2.1: The three generations of quarks and leptons in the Standard Model.

The simplest model that describes the properties of quarks and leptons is called

the Standard Model (SM) of the strong and electroweak interactions (an updated

view of the SM can be found in Ref. [3]). However, the SM merely accommodates

these particles and their masses, but does not explain their origin. The top quark

is an interesting particle for investigating the origin of mass because it has a mass

much larger than the rest of the quarks and leptons. The mystery of this large mass

(� 174 GeV), with the next heaviest b quark having a mass of only about 5 GeV,

almost demands greater study in order to �nd or unlock other mysteries.

The short lifetime of the top quark (yet to be determined) is another charac-

teristic that provides the possibility for measurement that has no analogue in the

other quarks. In contrast to the lightest quarks, which are con�ned permanently

in bound states with other quarks and antiquarks, the top quark decays so quickly

that it does not have time to form bound hadronic states (analogous to protons or

� mesons). There is also insuÆcient time prior to the decay to change the spin

character of a top quark, and its decays therefore reects the underlying dynamics.
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Thus, the top quark is largely free of many complications associated with the strong

interaction, and it presents novel experimental challenges and opportunities that

require innovative ideas and techniques.

2.1 The Top Quark in the Standard Model.

The top quark was discovered in data obtained at the Tevatron during Run I, be-

tween 1992-1996, in which approximately 100 events/pb of luminosity was collected

at the CDF and D� detectors. The SM suggests that the top quark has a very short

lifetime of about 5� 10�25 s, and it can therefore only be detected indirectly via its

decay products.

The most likely means of producing top quarks is through the color (gluon) inter-

action, and since this strong interaction conserves quark \avor" quantum numbers,

the top quark must be produced in tt pairs. The top quark can also be produced

singly through the weak interaction, but these kind of processes will not concern us

here.

The leading order diagrams for top quark production are shown in Figure 2.2, the

two major production channels involve qq annihilation and gluon fusion. Because it

is more likely for a signi�cant fraction of the proton or antiproton momentum to be

carried by a quark than by a gluon, the qq channels dominates the production rate
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Figure 2.2: Leading order diagrams for tt production.

for the relatively massive top quarks at the energy of the Tevatron.

The only interaction that does not conserve quark avor is the weak interaction,

and it is therefore the only route open for top quark decay in the Standard Model.

The vertices of relevance are of the type shown in Figure 2.3. For a top mass larger

than the W mass, the top quark must decay mainly into a W and a b quark. The b

quark fragments and hadronizes, forming a jet of �nal state particles (mainly � and

K mesons). The decay of the W can proceed through any pair of particles forming

a quark or lepton doublet (e.g., W� ! e��e, cs , etc., except for the kinematically

forbidden tb doublet). Because the masses of the particles from W decay are far

smaller than the W mass, the probability for decay into any doublet is nearly equal.
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Figure 2.3: Decay of the top (t) quark into a W boson and a bottom (b) quark.

Moreover, because quarks come in three colors, each of the qq modes is three times

more likely than any of the l�l modes.

2.2 Mass of the Top Quark and Other Electroweak

Parameters.

This work will describe a new technique to measure the mass of the top quark. The

mass has already been measured by the D�[4] and CDF[5] collaborations to be

mt = 172:1� 7:1 GeV (D�), and (2.1)

mt = 176:0� 6:5 GeV (CDF). (2.2)

An important issue is what precision should be sought for mt. One way to

address this question is in the context of precision measurements of other electroweak
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parameters [6]. These are summarized in Figure 2.4 in a plot of the mass of the W

boson (mW ) versus mt, for di�erent values of the unkown mass of the Higgs boson

(mH). In the Stardard Model, the value ofmt can be used to constrain mH . Indirect

constraints from LEP, SLD and �-nucleon interactions [6] are given by the conical

ellipse (solid line). The dotted ellipse is the 1 standard deviation contour in mt and

mW . Since the contour spans about �8 GeV along the mt axis, it can be concluded

that the 5 GeV uncertainty in the top mass is not a critically limiting factor in the

constraint on mH . However, the measurement of mW will improve signi�cantly in

the future, with an uncertainty of 20 MeV being a realistic goal for Run II of the

Tevatron (for a luminosity 30 event/fb). If this uncertainty is projected on a line

of constant Higgs mass in Figure 2.4, the 20 MeV uncertaninty in mW corresponds

to an uncertainty of 3 GeV in the mass of the top quark. Thus an uncertainty less

than 3 GeV in the mass of the top quark would allow to make maximun use of the

other precision electroweak measurements.
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Chapter 3

Fermilab and D�

This chapter contains a brief description of the accelerator complex and the elements

of the D� detector. A more complete discussion of the latter can be found in Ref.

[7].

3.1 The accelerator and the beam.

Because of the large value ofmt, the production of pairs of top quark requires a large

center-of-mass (CM) energy, and the Tevatron pp collider is the ideal accelerator for

this purpose. The drawback in using a pp collider is that protons, unlike electrons,

are objects composed of quarks and gluons, and this complicates the analysis of the

collisions, and means that only a fraction of the total CM energy is available in any
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particular pp collision.

The Fermi National Accelerator Laboratory (Fermilab), located in Batavia, Illi-

nois, about 40 miles west from Chicago, is the home of the Tevatron accelerator.

The data used in this analysis were collected in what is called `Run I' of the

Tevatron, which started in 1992 and �nished in 1996. During most of that time the

accelerator ran at the world's highest center-of-mass energy of 1800 GeV. Since the

end of Run I, the accelerator has been upgraded for a new run that started in March

2001.

A schematic of the accelerator complex used in Run I is shown in Fig. 3.1. The

Tevatron is e�ectively a proton storage ring, containing superconducting magnets.

In Run I, the Tevatron was �lled with six bunches of protons and antiprotons that

circulated in opposite directions. The trajectories of these two beams were set to

produce collisions at the B0 and D0 experimental areas. A sophisticated series of

processes are used to accumulate these p and p beams in the Tevatron Ring, and to

make them collide, and we provide a brief description of this below. More details

can be found in Refs. [8, 9, 10, 11].

The �rst step involves the preaccelerator, where H� ions are formed and accel-

erated to 750 keV by an electrostatic Cockroft-Walton accelerator. This accelerator

operates in a pulsed mode with a frequency of 15 Hz. The preaccelerator is the ion

source for the Linac.
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Figure 3.1: Schematic of the accelerator complex
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The Linac is a 150 m linear accelerator that boosts the energy of the ions to 400

MeV. At the end of the Linac, there is a carbon foil that strips o� the electrons

from the H�, leaving bare protons. The protons at the end of the Linac are then

injected into the Booster.

The Booster is a synchrotron accelerator 151 m in diameter. As in any syn-

chrotron, the charged particles are con�ned in a closed orbit with bending magnets.

RF cavities along the booster are used to increase the energy of the charged par-

ticles, and, as the energy increases, the �eld in the con�ning magnets is increased

to keep the particles in the same orbit. The Booster accelerates the protons to an

energy of 8 GeV, and these are then injected into the main Main Ring.

The Main Ring is also a synchrotron (radius of � 1 km ) that has conventional

(not superconducting) magnets. The original ring was deformed at B0 and D0

with over-passes to accommodate the CDF and D� detectors. The protons in the

Main Ring are accelerated to � 120 GeV, at which point they can be used to make

antiprotons, or they can be injected for further acceleration in the Tevatron Ring.

The antiproton source is a major element of the accelerator complex. It is used

to produce and store antiprotons for collisions in the Tevatron. While collisions are

occurring at the Tevatron, typically, the antiproton source is running continuously

at a production cycle 2.4 s. To prodice antiprotons the 120 GeV protons in the

Main Ring are extracted onto a nickel target. These collisions produce a spray of
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Table 3.1: Accelerator parameters

Accelerator radius 1000 m
Maximum beam energy 900 GeV
Injection energy 150 GeV
Peak luminosity 1031cm�2s�1

Number of bunches 6p,6p
Intensity per bunch � 100� 109p, � 50� 109p
Crossing angle 0
Bunch length 50 cm
Transverse beam radius 43 �m
Energy spread 0:15� 10�3

RF frequency 53 MHz
p stacking rate � 3:5� 1010=hour
Beam crossing frequency 290 kHz
Period between crossings 3:5 �s

nuclear debris, which includes some antiprotons. Immediately following this target,

there is a lithium \lens", a cylindrical piece of lithium through which a large current

(0.5 MA) can be passed. This generates an azimuthal magnetic �eld that focuses

negatively-charged particles passing though its center. Following the lens, there is

a bending magnet that selects negatively-charged particles with energies of 8 GeV,

and transports them to the Debuncher. The Debuncher is a storage ring in which

antiprotons are rotated in phase space from a con�guration with a small time spread

and large momentum spread to one with large time spread but small momentum

spread (this process is called `debunching'). A further step to reduce the momentum

spread is performed after the Debuncher, and is called stochastic cooling. Stochastic
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cooling [12, 13] operates by measuring the trajectory of a collection of particles

relative to the desired orbit. From this information, a correction signal is derived

and passed across the ring to kicker electrodes to apply a force on the particles

to move them back to the desired orbit. The e�ect on any single particle is very

small because of the incoherent distribution of the other particles in the beam, but

when repeated over a large number of turns, the e�ect becomes signi�cant. The

antiprotons are kept in the Debuncher until just before the arrival of the next pulse,

which is about 2.4 s later. The antiprotons are then transfered to the Accumulator,

another storage ring that is located along the Debuncher. There, cooling continues

for several hours, and eventually the antiprotons settle into a dense core near the

inner radius of the Accumulator. When enough antiprotons have been accumulated

to �ll the Tevatron (typically of the order of 1012 particles), they are extracted from

the Accumulator, accelerated to 150 GeV in the Main Ring, and injected in bunches

into the Tevatron.

The Tevatron is a proton synchrotron made from superconducting magnets [8, 9,

10, 11]. It sits bellow the Main Ring in the accelerator tunnel, and has a maximum

beam energy of 1000 GeV. The Tevatron can be operated in one of two modes. In the

�xed-target mode, the Tevatron is �lled with protons that are accelerated and then

extracted and directed to di�erent experimental areas. This cycle can be repeated

about every minute. In the collider mode, the Tevatron is �lled with six bunches of
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protons and six bunches of antiprotons of 120 GeV , traveling in opposite directions.

The beams are then accelerated to the maximum possible energy (about 900 GeV

in Run I), and made collide at the B0 and D0 accelerator sectors. There are other

points where the beam can collide, and there special electrostatic separators are

used to keep them apart. The beams are kept colliding typically for about 20 hours,

after which time the machine is emptied and re�lled with new batches of protons

and antiprotons. The Tevatron parameters are sumarized in Table 3.1.

3.2 The D� detector.

As mentioned in Chapter 2, the top quark decays into electrons, muons, neutrinos

and jets, and a detector capable to identify and measure these particles is needed

for studying the top quark.

D� [7] is a multipurpose detector assembled to investigate pp collisions at the

Tevatron [8, 9, 10, 11]. It has been running since 1992, a schematic of the detector

with an indication of its scale is shown in Fig. 3.2. It features good electron and

muon identi�cation, and excellent calorimetry that provides a good measurement of

energies for electrons, photons and hadrons (jets). The D� detector did not have a

central magnetic �eld in Run I, and relied on its calorimetry to measure energies and

to identify electrons and photons. The detector consists of three parts: the central
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tracker, the calorimeter and the muon spectrometer. These units will be discussed

below.

3.3 Coordinates system.

For clarity, we will begin with a description of the coordinate system for the detector.

The z-axis of the Cartesian coordinates is de�ned as the direction of the proton

beam, and the y-axis is upward. The x-axis is then �xed by the right hand rule. The

radial distance in the transverse plane is de�ned by r =
p
x2 + y2. The azimuthal

angle � is measured relative to the x-axis in the plane transverse to the beam. The

polar angle � is measured relative to the z-axis.

Instead of using �, we de�ne the more convenient coordinate, the pseudorapidity

� = � ln(tan
�

2
) : (3.1)

In the ultrarelativistic limit, i.e. m=E ! 0, � approximates the true rapidity:

y =
1

2
ln(

E + pz
E � pz

) : (3.2)

Using �, the invariant inclusive cross section for producing any particle of energy
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D0 Detector

Figure 3.2: Schematic of D�, a multipurpose detector assembled to investigate pp
collisions at the Tevatron.
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E and momentum �!p , can be expressed as

E
d�

d3p
=

1

2�

d�

pTdpTdy
�= 1

2�

d�

pTdpTd�
; (3.3)

where pT is the transverse momentum of the particle, and the distribution in � is

assumed isotropic (for unpolarized beams).

3.4 The Central Tracker

The central tracker is in the innermost section of the detector. This subdetector

is used to reconstruct charged-particle tracks, to determine positions of interaction

vertexes, and to measure the ionization of charged particles to distinguish a singly

charge particle from photon conversions ( ! e+e�) in the detector. The tracker is

composed of three types of gaseous drift chambers: a vertex drift chamber (VTX),

a central drift chamber (CDC), and two forward drift chambers (FDC). The central

tracker also contains a transition radiation detector (TRD). The arrangement of the

tracker is shown in Fig. 3.3.
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Figure 3.3: Schematic of the D� central tracker.

3.4.1 Drift Chambers

Drift chambers are designed to detect ionization liberated by a charged particle

passing through the gas-�lled region. The produced ionization is proportional to the

total energy deposited by the particle, and it depends on the ionization potential of

the gas. The typical number of ions pairs is of the order of 50 per cm of traversed

gas, and corresponds to primary ionization electrons.

When a voltage is applied across the sensitive region, the free electrons drift

toward the anode. The energy gained by the electrons drifting in the electric �eld

comes quickly into equilibrium with that lost due to collisions with atoms, and the

drift velocity, on average, becomes constant.
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The number of drift electrons that eventually reach the anode is far too small

to produce an observable signal. However, if the anode is a suÆciently thin wire

(typically 20 �m diameter), it creates a large electric �eld (104 � 105V/cm) very

close to the wire. In the region where this �eld is large enough, the energy gained

by the electrons between atomic collisions will exceed the ionization potential of

the gas, creating an avalanche of secondary ionization. The number of secondary

electron-ion pairs is typically 105 times that of the primary ionization, and such a

gain is suÆcient to produce a detectable signal.

If a drift chamber is constructed to have the potential gradient approximately

constant across the region of transverse electron drift, then the relation between the

arrival time of the signal and distance to the original ionization will be linear. This

timing feature is used to measure the trajectory of a charged particle through a drift

chamber.

For further details on drift chambers see Refs. [14], [15] and [16].

Vertex Chamber (VTX).

The Vertex Chamber [17] has an inner radius of 3:7 cm, and an outer radius of

16:2 cm. It consists of three layers of concentric cells, as shown in Figure 3.4.

The innermost layer has 16 cells in azimuth, and the outer two have 32 cells each.

The sense wires have a resistivity 1.8 k
=m, and provide a measurement of the
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Figure 3.4: The r-� view of a quadrant of the Vertex Drift Chamber (VTX).

z-coordinate from the pulse height read out at both ends. The � position of a hit

is determined from the drift time. The spatial resolution along the azimuth rÆ� is

� 60�m and, the resolution in z is � 1:5 cm.

Central Drift Chamber (CDC).

The Central Drift Chamber [18] is located between the TRD and the central calorime-

ter. The CDC consists of a cylindrical shell, 184 cm long, and with radii ranging

between 49:5 cm and 74:5 cm. It has four concentric rings of 32 azimuthal cells per

ring. Each cell has 7 equally spaced sense wires at the same � coordinate. These

wires are parallel to the z-axis, and are read out at one end to measure the � coordi-

nate of the track. There are delay lines embedded in the inner and outer shelves of

each cell. The delay lines propagate signals to both ends, indexed from the nearest
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neighboring anode wire. The z coordinate of a track can be obtained from the dif-

ference in the arrival times of signals at the two ends. The rÆ� resolution is �= 180

�m, and the resolution in z is �= 3 mm.

Forward Drift Chambers (FDC).

The Forward Drift Chambers [19] are located at either end of the concentric barrels

of the VTX, TRD and CDC, and just before the inner walls of the end calorimeters.

They extend the coverage for charge-particle tracking down to � = 5o . Each FDC

package consists of three separate chambers, as shown in Figure 3.5. The � module

has radial sense wires used to measure the � coordinate. It is sandwiched between

a pair of � modules, whose sense wires determine the � coordinate. The geometry

of the FDC is more complicated than that of the CDC, but the operating principle

is similar, and the chamber gas is the same. The position resolution is about 200

�m in rÆ� and 300 �m in rÆ�.

3.4.2 Transition Radiation Detector (TRD).

The Transition Radiation Detector [20] is located between the VTX and the CDC.

It provides independent electron identi�cation, in addition to that given by the

calorimeter and the tracking chambers. When highly relativistic charged particles( =

E=m > 103) traverse boundaries between media of di�erent dielectric constants,
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Figure 3.5: Schematic of the FDC. Two � modules with a � module in between.

transition-radiation X-rays are produced at a cone with an opening angle of � 1=.

The energy ux of the radiation is proportional to . These characteristics can be

use to distinguish particles that have similar energies but di�erent masses.

The TRD consists of many thin dielectric foils (polypropylene), with gaps of

nitrogen gas between them. Charged particles tranversing such an array produce

X-ray radiation. A radial-drift proportional wire chamber containing xenon gas acts

as the X-ray conversion medium and also collects the resulting ionization charges

that drift radially towards the sense wires. The magnitude and arrival time of the

charge clusters are used to distinguish electrons from hadrons. Because if its low

detection eÆciency, this device was not used in all analyses.
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3.5 The Calorimeter.

Because of the absence of an inner tracking magnet, we rely on the calorimeter to

identify electrons, photons and jets, and to reconstruct their energies. The detected

energies in the calorimeter are used to determine the transverse momenta (or trans-

verse energies, PT � ET = E sin �) of jets, and the imbalance in an event (often

called \missing ET " or =ET ). In general, this can be associated with neutrinos that

escape detection.

The D� calorimeter is a sampling calorimeter. A typical con�guration of the

sampling calorimeter is a stack of dense metallic plates (\absorber material") in

which particles interact and loose energy, interleaved with regions of sensitive ma-

terial where any deposited ionization energy can be sampled and measured. The

energy deposited in the active layers accounts for only a fraction of the total energy,

usually 1-10%, and this fraction is almost independent of incident energy. There-

fore, through proper calibration, a sampling calorimeter can provide a precise value

of incident particle energy. The D� calorimeters use liquid argon as the sensitive

material, and primarily uranium and copper as absorber.

There are two types of particle-induced showers that can be distinguished in a

calorimeter: electromagnetic showers, which deposit most of their energy in the up-

stream sections of a calorimeter, and are produced by energetic electrons or photons,
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and hadronic showers, which deposit most of their energy in the downstream part

of the calorimeters and are initiated by hadrons.

An electromagnetic shower consists of a cascade of electrons, positrons, and

photons that result from bremsstrahlung and e�e+ pair production initiated by

incident photons or electrons, as they travel through and interact in the calorimeter.

The number of secondary particles increases geometrically, until electrons reach the

\critical energy", at which point the electrons loose the same amount of energy

through radiation as through ionization of the medium. After that, the number

of particles decreases and their energy gradually dissipates through the process of

ionization.

Unlike electromagnetic showers, the physical processes that cause the propaga-

tion of hadronic showers are mainly strong interactions between hadrons and nuclei.

A considerable fraction of the hadron energy is transferred to the intervening nu-

clei, and causes the production of secondary hadrons, which in turn produce more

hadrons. This cascade develops until the energies of the secondary hadrons are

exhausted through ionization, or the particles are absorbed in nuclear break-up

processes. Neutral pions (�0) can be produced as secondary hadrons, and then de-

cay into two photons, which gives rise to an electromagnetic component within a

hadronic shower.
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Hadronic showers tend to spread more laterally, and are more penetrating lon-

gitudinally than electromagnetic showers. Also, the greater variety of hadronic

interactions implies larger uctuations in the measurement of their energies.

The longitudinal development of electromagnetic showers is characterized by

the radiation length of the intervening material (X0), which corresponds to the

mean distance over which an electron loses all but 1=e of its energy (mainly by

bremsstrahlung). The length scale appropriate for hadronic showers is the nuclear

interaction mean free path (�I), which is the distance over which the probability that

an incident hadron interacts inelastically with the intervening calorimeter material

is (e � 1)=e � 0:63. Both the radiation length and the nuclear interaction mean

free path depend on the nature of the material of the calorimeter, and can be

approximated by the empirical formulae [21]:

X0 � 716:4 A

Z(Z + 1) ln(287=
p
Z)

g=cm2 and (3.4)

�I � 35A
1

3 g=cm2 ; (3.5)

where Z and A are, respectively, the atomic number and the atomic weight of

the medium. Typically, �I � X0. Dense absorbers such as steel (X0 = 1:76 cm,

�I = 16:76 cm) or uranium (X0 = 0:32 cm, �I = 10:5 cm) are often used to minimize
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Figure 3.6: Schematic of the D� calorimeter

the size of a calorimeter.

The D� liquid argon calorimeters consist of a central calorimeter (CC) and two

end calorimeters (EC), as shown in Figure 3.6. Each calorimeter is contained within

a separate cryostat, and each contains an inner electromagnetic (EM) section, a

�ne hadronic (FH) section, and a coarse hadronic (CH) section. The intercryostat

detector (ICD), made of scintillator, is located between the CC and the EC cryostats,

and is used to improve the energy resolution of jets in that region.

The EM section of each cryostat of the D� calorimeter is roughly 21 radiation
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lengths deep, and is divided into four longitudinal layers, in order to provide infor-

mation on the pro�le of the showers. Depending on �, the hadronic sections present

an extra 6 to 9 nuclear interactions lengths to an incident nucleon, beyond the � 1:0

�I of material of the EM section. These sections are divided in four (CC) or �ve

(EC) layers. As shown in Figure 3.7, the calorimeter is segmented into towers of

�� ��� = 0:1� 0:1. The third layer of the EM section, which is where the max-

imum number of particles in electromagnetic showers are expected to occur, has a

�ner segmentation of �� ��� = 0:05� 0:05.

The performance of the calorimeter has been studied at a test-beam facility

[22, 23] with electron and pion beams, for energies between 10 and 150 GeV. From

these studies it has been concludes that the relative resolutions are [22, 23]:

�(E)

E
=

16%p
E(GeV )

� 0:3% for electrons and (3.6)

�(E)

E
=

41%p
E(GeV )

� 3:2% for pions. (3.7)

Where �(E) is the resolution as a function of energy E, and � means to be added

in quadrature.
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3.5.1 Central and End Calorimeters.

The central calorimeter (CC) covers the pseudorapidity range j�j � 1. It is com-

prised of three concentric cylindrical shells of 32 EM modules in the inner ring, 16

FH modules in the surrounding ring, and 16 CH modules in the outer ring. In

order to reduce the energy loss in intermodular \cracks", the EM, FH, and CH

module boundaries are arranged so that no projective ray encounters more that one

intermodular gap.

A unit cell of a calorimeter module consists typically of two liquid-argon gaps,

an absorber plate, and a signal board ( with laminated Cu pads), as shown in Figure

3.8. Each signal board has a surface coated with �ne resistive epoxy. The electric

�eld in the cell is established by connecting the resistive surfaces of the boards to a

high positive voltage (2.0-2.5 kV), and grounding the absorber plates. The electron

drift time across the 2.3 mm Argon gap is � 450 nsec.

The two mirror-image end calorimeters (ECs) extend the coverage to j�j � 4.

3.6 Muon Spectrometer.

In order for a particle to pass through the material in the calorimeter, it must

have a suÆciently long lifetime to travel several meters before decaying, it must not

have strong interactions (and thereby cause a hadronic shower), and be unlikely to
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Figure 3.7: Side view of the D� calorimeters. Rays of �xed � relative to the center
of the detector are given in the sketch.
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Figure 3.8: Unit cell in the D� calorimeter.
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Figure 3.9: Muon Spectrometer in the D� detector.
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lose substantial energy to bremsstrahlung (which would produce an electromagnetic

shower). The only charged particle with such properties is the muon, and that is

why a subdetector was constructed outside of the calorimeter, expressly to detect

muons. The Muon Spectrometer is shown in Figure 3.9.

Since usually muons deposit only little energy in the calorimeter (mainly through

ionization), a magnetic spectrometer is used to measure their momenta. This consist

of layers of proportional drift tubes (PDTs) surrounding magnetized iron toroids.

A measurement of the particle direction before and after the toroid, determines

the muon momentum. The additional material outside the calorimeter makes it

extremely unlikely that any particle other than a muon will reach the outer layers

of the drift tubes.

The Central Muon Spectrometer at D�, or the Wide-Angle Muon Spectrometer

(WAMUS), is formed of three planes of proportional drift tubes (PDTs), the �rst

layer (A) is mounted on the inner surface of the magnetized iron toroid, the second

(B) layer on the outer surface, and the �nal (C) layer � 1:4 m beyond this. The A

layer consist of four layers of PDTs, providing measurement of the incident muon

direction to 0:6 mrad. Additional information from the reconstructed event vertex,

the track in the central detector, and the muon energy deposited in the calorimeter,

can be used to improve the measurement of the original direction. The B and C

layers, each have three layers of PDTs, which determine the outgoing position and
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direction to 0:17 mm and 0:2 mrad. The WAMUS PDTs cover the region of j�j < 1:7.

The Small Angle Muon Spectrometer (SAMUS) covers the region of 1:7 < j�j <

3:6. Due to the high occupancy in the forward region, the SAMUS system uses small

drift tubes. It is composed of three stations, each consisting of three planes of drift

tubes. Each plane is composed of two subplanes, o�set by half a tube diameter,

each containing a single sense wire of 50 �m in diameter.

The resolution of the muon momentum measurement is limited largely by multi-

ple coulomb scattering in the toroids and by the hit-position resolution in the drift

chambers. The resolution was determined by comparing Z ! �+�� data with sim-

ilar Monte Carlo events where the resolution was degraded until the width of the

�+�� invariant mass for the Z matched that observed in the data. The resolution

is approximately Gaussian in 1=p, and can be parameterized as [25]:

�(
1

p
) =

0:18(p� 2)

p2
� 0:003 ; (3.8)

where p is the momentum in GeV.
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Chapter 4

Reconstruction and Particle

Identi�cation

After an interesting event is selected for o�ine study by the D� trigger system (see

Ref.[26, 27, 28, 29, 30]), all digital information is stored on tape cassettes (ADC

counts for the calorimeters, TDC counts for the drift chamber, etc.), and combined

to obtain o�ine the kinematic parameters of the physical objects present in the

event. The process of turning the detector data into description of physical objects,

such as leptons and jets, is called event reconstruction.

The reconstruction process can be divided in two steps.

� Tracking and Clustering. In this step, hits in each subdetector are correlated,

and used to construct objects. The hits in the calorimeter are clustered and the

39



information in the tracking chambers is used to construct particle trajectories.

� Particle Identi�cation. During this step, information from all parts of the

detector is combined to produce candidate electrons, jets and muons.

In this work, we will describe only particle identi�cation (ID). For other steps in

event reconstruction at D� see Ref. [31].

4.1 Electron Identi�cation.

Electrons are de�ned as localized depositions of energy associated with a track point-

ing back through the central tracker to an interaction vertex. Details can be found

in Ref. [32, 33, 34].

4.1.1 Candidate Construction.

Electron candidates are identi�ed as follows:

� Using a nearest neighbor algorithm, clusters are formed from calorimeter tow-

ers.

� A cluster is required to have at least 90% of its energy in the electromagnetic

calorimeter, and at least 60% of the energy must be contained in a single

0:1� 0:1 tower.
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� The centroid of the cluster is computed using the cells in the third electro-

magnetic layer.

� The reconstruction program searches for a track from the central detector

pointing from the interaction vertex to the calorimeter cluster. The match is

required to be within �� < 0:1 and �� < 0:1. If such track is found, the

cluster is identi�ed as an electron candidate, otherwise it becomes a photon

candidate.

Up to this point, the requirements for an electron candidate are not very re-

strictive. Any ensuing analysis applies additional criteria tailored to the particular

situation of interest. Selections for the analysis of tt events are described below.

4.1.2 Covariance Matrix �
2

A covariance matrix[32, 33, 34] is de�ned for quantifying the information contained

in the shape of an electromagnetic shower, as follows. We de�ne a training sample

by N observations of events of some given type, where each observation consists of

M variables: xi = (xi1; :::; x
i
M ), and i = 1; :::; N . In term of the parameters, we can

construct the covariance matrix V as:
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V =
1

N

NX
i=1

(xi � �x)T (xi � �x) ; (4.1)

where �x = (�x1; :::; �xM), and �xj =
PN

i=1 x
i
j

N
. The \H-matrix" is de�ned as the inverse

of the covariance matrix

H = V�1 : (4.2)

For any subsequent similar measurement y, one can de�ne a �2 that quanti�es

the consistency of y with the training sample:

�2 = (y � �x)H(y� �x)T : (4.3)

For the problem of electron identi�cation, the training sample consists of Monte-

Carlo generated single electron showers. A total of M = 41 observables is used in

V, consisting of the fractional energies in Layers 1,2, and 4 of the EM calorimeter,

the fractional energies in each cell of a 6x6 array in the third EM layer (centered on

the most energetic tower in the cluster), the z-position of the interaction vertex, and

the logarithm of the total energy of the cluster. A separate matrix is constructed

for each ring of calorimeter cells (i.e., as a function of the � coordinate). A good
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electron is de�ned by �2 < 100.(For distributions of this �2 variable see Ref. [35].)

4.1.3 Isolation.

Because of the large energy release in W ! e� decay, the decay electron from a W

tends not be close in space to any other object in the event. This criterion is quanti-

�ed as the \isolation fraction" for the shower, as follows: If Etot(0:4) represents the

energy deposited in all the calorimeter cells within a cone of R =
p
(��)2 + (��)2 <

0:4 around the electron direction, and EEM(0:2) is the energy deposited in the elec-

tromagnetic calorimeter within a cone of radius R < 0:2, then the isolation fraction

is de�ned by:

fiso =
Etot(0:4)� EEM(0:2)

EEM(0:2)
: (4.4)

For the present analysis, good electron candidates are required to have fiso < 0:1.

The distributions of fiso for Monte Carlo simulated objects can be found in Ref.

[35].
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4.1.4 Signi�cance of a Track-match.

A signi�cant source of background to electrons are photon showers. A photon does

not produce a track in the central detector, but it might appear to have an as-

sociated track when there is some charged particle emitted close to its direction.

Such background to electrons can be reduced by requiring that the reconstructed

track point accurately to the centroid of the calorimeter cluster. This selection is

quanti�ed by using a signi�cance for the track matching:

S =

s
��

��
+
�z

�z
; (4.5)

where �� and �z are the di�erences in coordinate between the centroid of the cluster

and the point at which the trajectory of the track extrapolates to the calorimeter,

and �� and �z are the corresponding measurement resolutions. For this analysis,

good electron candidates are de�ne as those with S < 5. A distribution of track

signi�cance for Monte Carlo simulated objects can be found in Ref. [35]

4.1.5 Track Ionization.

Because D� has no central magnetic �eld, e+e� pairs resulting from photon con-

version do not diverge very much from each other, and their trajectories are often
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reconstructed as a single track. However, away from the point of conversion, the

energy deposition per unit length will be twice that for a single electron (which is

called one MIP, minimum ionizing particle). This background can be reduced by

removing events in the region > 2 MIPs. Distributions of the energy deposition can

be found in Ref.[35].

4.1.6 Kinematic Criteria and Summary.

In addition to the above quality criteria, the tt! e+jets analysis requires electrons

with ET > 20 GeV and j�detj < 2 (where det refers to � de�ned relative to the

center of the detector). This is done to reduce background (it has very little impact

on signal). The �nal eÆciency for identifying single acceptable isolated electrons

with these selections is about 72% in the CC and 43% in the EC, and is essentially

idependent of the electron energy.

4.1.7 Electron Energy Corrections.

The absolute energy scale of the calorimeter was originally based on calibration

data obtained in a test beam. However, due to a possible di�erence between the

test beam module (never used in the D� detector) and the modules installed at

D�, this calibration did not provide the correct mass of the Z boson in Z ! e+e�

events. Because this mass is known very accurately from LEP experiments [36],
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the measured electron energies were consequently scaled up so that the mass peak

in Z ! e+e� matched the LEP value. This correction is about 5% in the central

calorimeter, and 1-2% in the end calorimeter.

4.2 Muon Identi�cation.

Muons are identi�ed as tracks in the muon chamber that point back to the inter-

action vertex. There are two major backgrounds to consider: cosmic-ray muons

and hadronic showers that extend beyond the calorimeter. The latter background is

important only in the transition region between the cryostats, where there in not as

much absorber material as in the rest of the detector. Further details can be found

in Ref. [37].

4.2.1 Reconstruction of Muon Trajectory.

Track segments are formed separately before and after the magnet. These segments

are matched, and the muon momentum determined by the bend in the track through

the magnet.

The momentum resolution of the muon spectrometer is not very good, but it

can be improved if the muon trajectory can be associated with a track in the cen-

tral detector and with an interaction vertex. This provides a more accurate muon
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trajectory before the magnet.

The measured muon momentum is the momentum of the particle after it passes

the calorimeter. Typically, a muon deposits several GeV of energy in the calorimeter.

This energy loss can be estimated through a Monte Carlo calculation and added to

the measured momentum. The energy deposited in the calorimeter is also useful for

rejecting background to muon candidates.

4.2.2 Impact Parameters.

Good muon candidates have requirements that their trajectories point to the in-

teraction vertex. These criteria are used to reduce background from cosmic rays.

In particular, an impact parameter is de�ned in the non-bend view by projecting

the muon track into the x,y plane, and extrapolating the trajectory formed by the

B and C layers towards the center of the detector. The impact parameter is then

calculated between this extrapolated track and the interaction vertex, and in this

analysis it is required to be less that 40 cm. A similar impact parameter in the

bend-view is obtained by projecting the muon trajectory onto the bend-plane, and

calculating the impact parameter of this trajectory at the interaction vertex. For

an acceptable muon, the impact parameter is required to be less than 25 cm.
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4.2.3 Cosmic Ray Veto.

A cosmic ray muon that penetrates the entire detector leaves hits in the muon

chambers on both sides of an interaction vertex. Therefore, a track in the central

region (j�j < 1) is rejected if there is another track, or an excessive number of hits,

aligned with it in the opposite hemisphere.

4.2.4 Track Timing.

The time T0 at which a particle goes through a drift chamber is needed for determin-

ing the drift time and thereby the location of a track. Normally, this is calculated

relative to the time at which the beams cross. For tracks caused by cosmic rays,

this value will not be correct, since they are not synchronized with the accelerator.

In fact, for a cosmic-ray muon, the quality of the track usually improves by using a

T0 di�erent from the one based on a beam crossing. This provides another way to

reject cosmic rays. A �2 �t to any muon track is therefore minimized with respect

to T0, and the result is compared with the nominal T0 for the beam crossing. If the

di�erence is larger than 100 nsec, the track is rejected.
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4.2.5 Hit Multiplicity.

Depending on the region of the detector, a muon track will typically have hits in

7-10 drift tubes. High-pT muons in the end regions are required to have at least 5

hits (there is no explicit requirement for the central region).

4.2.6 Isolation and Con�rmation in the Calorimeter.

A muon passing through the detector will deposit typically between 1 and 3 GeV of

energy in the calorimeter. An acceptable muon track is required to have at least 1

GeV of energy deposited along its trajectory in the calorimeter. Also, a good muon

must be separated from any jet by a minimum distance of R = 0:5.

4.2.7 Kinematic Criteria and Summary.

Accepted muons are required to have trajectories contained entirely in the WAMUS

system, that is, in the region of j�j < 1:7. Our tt analysis also requires that muons

from W decays have ET > 15 GeV. The eÆciency for �nding isolated muons in tt

events with these set of criteria is � 41%. A di�erent set of requirements is used for

identifying muons associated with b quarks.
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4.3 Jet Reconstruction.

When a quark or gluon leaves the site of a hard scattering, QCD hadronization

and fragmentation e�ects produce a collection of colorless hadronic particles that

are emitted in a cone around the direction of the momentum of the initial parton.

These secondaries interact in the calorimeter, and the �nal cluster of energy is called

a calorimeter jet.

This analysis uses the cone-clustering algorithm for reconstructing jets [38, 39,

40, 41]. It is a standard algorithm used in previous experiments, and will not

be discussed any further. For the tt mass analysis the jets are formed using R =

p
(��)2 + (��)2 = 0:5 cones, where �� and �� correspond, repectively, to the sizes

of the clusters in azimuth and pseudorapidity. A �rst level of energy corrections is

applied before the events are selected, and this is used in most D� analyses (see

in Ref. [42] for details). These \CAFIX" corrections will not be discussed any

further. In the rest of this chapter, we will concentrate on the next levels of jet

energy corrections that are needed to improve the resolution in tt events.
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4.3.1 Jet Energy Corrections.

The D� Standard.

Figure 4.1 displays a scatter plot of the energies of generated partons and their

reconstructed jets in lepton+jets tt Monte Carlo events. As can be seen, the cone

algorithm yields jets of smaller energy than carried by the original partons. A

correction is therefore required to account for this e�ect for cases where the quantity

of interest is the original parton energy, as is the case in our analysis of the mass of

the top quark.

D� has a standard way to make such corrections, and these are described in

detail in Refs. [43], [44] and [45]. The general idea is to modify the energy of the

reconstructed jet to recover, on average, the energy of the parton. The corrections

are made in two steps:

1. \Out-of-cone" corrections are made to compensate for the radiation of parti-

cles outside the cone considered in the clustering algorithm. These corrections

are derived from a comparison of the energy of reconstructed jets in MC sim-

ulated tt events with the energy of the corresponding partons. The correction

is di�erent for b quarks and for light quarks, and depends on �. The cor-

rected energy Ecorr is expressed in terms of the reconstructed jet energy Ejet
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Figure 4.1: E�ect of the out-of-cone radiation. The reconstructed jets have on
average less energy than the original parton, this is the motivation for the out-of-
cone corrections, which are based on the comparison of parton energies and energies
of reconstructed jets in tt events (circles). The correction attempts to provide a 1:1
correspondence ( given by the dashed line).
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Table 4.1: Parameters for parton-level jet corrections. Ecorr = (Ejet � A)=B.
Light quark jets Untagged b jets

� region A (GeV) B A (GeV) B
0:0 < j�detj < 0:2 0.322 0.933 -0.672 0.907
0:2 < j�detj < 0:6 0.635 0.930 -1.34 0.914
0:6 < j�detj < 0:9 1.86 0.883 0.002 0.868
0:9 < j�detj < 1:3 1.70 0.933 -0.548 0.904
1:3 < j�detj 4.50 0.882 2.46 0.859

as follows:

Ecorr =
Ejet � A

B
(4.6)

where A is the intercept and B is the slope (obtained from Figure 4.1), theese

parameters are derived for di�erent regions of �, and the results are shown in

Table 4.1. There is a separate set of corrections for those b quarks that are

tagged by soft muons, and these corrections are also described in Refs. [43],

[44] and [45], but we will concentrate only on the untagged b quarks in this

dissertation.

2. The �-dependent corrections, unlike the out-of-cone corrections that depend

only on Monte Carlo simulated tt events, are data driven, and used to ensure

the consistency of MC with data. These are also part of the standard tt mass

analysis in the single-lepton channel at D�.
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The �-dependent corrections are obtained after applying the out-of-cone cor-

rections, and are based on events with only one \photon" and one jet (+jet).

These are not pure direct-photon events, but rather any highly electromag-

netic -like showers produced in association with an opposing jet. Because

the electromagnetic energy scale is well calibrated, the jet ET is compared

with that of the photon. The deviation from unity in jet energy scale can

be measured by the fractional di�erence (�S) in ET between the jet and the

photon:

�S =
ET (jet)� ET ()

ET ()
: (4.7)

The value of �S is averaged over large samples of events, as a function of �,

and the results are shown in Fig. 4.2 for data and for MC simulations. These

plots provide two functions, one to correct the data and one to correct the MC

events, and de�ne the �nal corrected jet energies (independent of jet type).

The �-dependent corrections are referenced to all the previous levels of energy

corrections, those intrinsic to the simple-cone clustering algorithm [42] and

to the out-of-cone corrections [43, 44, 45]. If those are changed, then the

�-dependent corrections must be re-examined as well.
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Figure 4.2: Dependence of the deviation in the jet energy scale (�S) for +jets data
and tt MC events, as a function of j�j [45].
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The Transfer Functions.

In our analysis we also consider an alternative approach to the problem of jet energy

corrections. We take account of the fact that energy losses due to hadronization and

radiation are strongly asymmetric relative to the original parton energy. This will

be described in Chapter 5.
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Chapter 5

Mapping Between Jet and Parton

Energies.

The standard jet energy corrections used in previous top quark mass measurements

at D� correct the energies of a jet (rather than ET values) in such a way that, for a

given �-region and a given parton energy range, the di�erence between the corrected

jet energy (Ecorr) and the parton energy Eparton has a mean equal to 0, that is

< ÆcorrE >=< Ecorr � Eparton >�;Eparton= 0 : (5.1)

However, these corrections do not account for the shape of the uncorrected ÆE =

Ejet � Eparton distribution shown in Figure 5.1. These distributions are clearly not
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symmetric, with a signi�cant tail at negative values. Consequently, correcting for

the mean, and then considering just a Gaussian resolution around the corrected

energy, can often yield to an underestimation of jet energy.

Because an extraction of the correct mass of the top quark requires unbiased

parton energies to be estimated from the energies of the jets, it is important to

consider the asymmetries in Figure 5.1.

5.1 Transfer function and production probability.

Each of the plots shown in Figure 5.1 corresponds to a distribution in N(ÆE) that

can be calculated as follows

N(ÆE) =

Z
n(Eparton)W (Eparton; Eparton + ÆE)dEparton ; (5.2)

where n(Eparton) is the original density distribution function of parton energies in

the sample, and W (Eparton; Eparton + ÆE) is the probability density to have Ejet =

Eparton + ÆE, given a parton energy Eparton. The mapping between parton energies

and jet energies is determined by W (Eparton; Ejet), and to extract it from Eq.(5.2)

requires knowledge n(Eparton).

Because W (Eparton; Ejet) should not depend on the mass of the top quark, a

large sample of jets was generated using tt events for mt = 140, 160, 175, 190 and
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Figure 5.1: Distributions in ÆE = Ejet � Eparton for di�erent parton energy ranges
(E range 1: 15 GeV < Eparton < 60 GeV, E range 2: 60 GeV < Eparton < 100 GeV,
E range 3: 100 GeV < Eparton < 140 GeV, for jets in tt event with 0:2 < j�j < 0:6).
The distributions have an extended tail for ÆE < 0, which corresponds to the e�ect
of hadronization and radiation.

59



200 GeV. Only those jets that could be matched to partons were selected for further

study. The distribution n(Eparton) was then parameterized for the remaining partons

in terms of Eparton and �, and, with the known the shape of N(ÆE), used to obtain

W (Eparton; Eparton + ÆE).

5.2 Parameterization of the transfer functions.

The smooth lines in Figure 5.1 correspond to �ts to the histograms using the func-

tions:

F (ÆE) = [exp
�(ÆE � p1)

2

2p22
+ p3 exp

�(ÆE � p4)
2

2p25
] : (5.3)

F (ÆE) is simply a sum of two Gaussians, one to account for the sharp peak and the

other to �t the asymmetric tails, used to approximate N(ÆE). The transfer function

is then de�ned as W (Eparton; Ejet) = F (Ejet � Eparton).

As can be seen in Figure 5.1, the parameters for Eq.(5.3) depend on parton

energy. This could be accounted for in the ensuing by binning jets in energy and

then calculating pi for each bin. In this way a transfer function would be generated

for each energy range, in the manner of the standard D� energy corrections of

Section 4.3.1. Instead of doing the binning in energy, we account for the variation
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Table 5.1: Parameters for W (Eparton; Ejet)
Light quark jets Untagged b jets

pi = ai + bi � Eparton ai bi ai bi
p1 (GeV) -1.65 -0.038 -3.41 -0.0333
p2 (GeV) 2.84 0.067 3.98 0.0673
p3 (dimensionless) 0.000 0.0013 0.000 0.00179
p4 (GeV) 11.56 -0.302 3.36 -0.227
p5 (GeV) 10.73 0.173 15.17 0.138

by assuming a linear dependence of the pi on Eparton, that is,

pi = ai + biEparton : (5.4)

This yields a total of 10 parameters (a1; b1; :::; a5; b5) de�ning the transfer function.

The values of ai and bi where found from a likelihood �t to the whole sample of

jets associated with partons, using the n(Eparton) density as discussed in the previous

section. The �ts were done separately for light quarks and for b quarks. The results

are given in Table 5.1.

The quality of the parameterization can be checked by comparing the two-

dimensional distributions in (Eparton; Ejet) with the prediction using the transfer

functions and n(Eparton), as given in Eq. (5.2). Figure 5.2 shows \lego" plots for the

region 0:2 < j�j < 0:6, and the corresponding contour plots are shown in Figure 5.3.

It is hard to compare two-dimentional histograms, and for this reason representative

slices of Eparton and Ejet are shown in Figures 5.4 and 5.5, repectively. These plots
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indicate that the parametrization is indeed excellent for 0:2 < j�j < 0:6. However,

for the region 1:3 < j�j < 2:0, the parameterization does not reproduce the distri-

bution in the MC sample, as can be seen in Figure 5.6. There is a signi�cant excess

in regions where the jet energy is higher than the parton energy, which is not the

case for more central jets. This e�ect may be due to the presence of initial-state

radiation that overlaps the jet cone of forward jets, and requires further study. The

impact of this bias on our analysis is not very strong because jets from tt events are

produced mainly at central � values.

5.3 Test of the Transfer Function.

The point of the transfer functions is to model the smearing in jet energies produced

by the combined e�ects of radiation, hadronization, measurement resolution and jet

reconstruction algorithm. One way to check that such a function is correct, is to use

it to smear the energies of objects generated at the parton level, and see whether

the distributions of the modi�ed kinematic variables agree with those obtained from

jets reconstructed via full detector simulation.

Once the parameterization of the transfer functionW (Ejet; Eparton) is obtained, it

can be used to predict distributions of any reconstructed quantities in Monte Carlo tt

events. As an example, the distribution of the invariant mass of three reconstructed
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Figure 5.2: Top: lego plot of Eparton vs Ejet for a sample of jets associated with partons

in ttMonte Carlo events, using full D� detector simulation (CAFIX corrections included).

Bottom: lego plot of Eparton vs Ejet), where Eparton is predicted using n(Eparton) and the

transfer function described in Eq.(5.2). The jets are in the region of 0:2 < j�j < 0:6.
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Figure 5.3: Contour plots corresponding to Figure 5.2. The di�erent shadings cor-
respond to di�erent number of events (40, 30, 20, 10 and 5).
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Figure 5.4: Slices of Ejet from the plots in Figure 5.2. The �lled histogram cor-
respond to predictions using n(Eparton) and the transfer function, and the lines
correspond to the original MC simulated events.
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Figure 5.5: Same as Figure 5.4, but now the slices in Eparton
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Figure 5.6: Slices in Ejet, same plots as in Figure 5.4, but now for jets in the region
1:3 < j�j < 2:0.
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jets with CAFIX corrections only (the jets being identi�ed in the MC as coming

from the hadronic decay of the top quark) is compared with the prediction using

our transfer function in Figures 5.7 and 5.8. Good agreement is observed between

the full D0 simulation (histograms) and the predictions from the transfer function

(smooth curves) for the shapes of the distributions. However, there is apparent a

small di�erence (� 2 GeV shift in the means). The origin of this discrepancy has

yet to be investigated.
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Figure 5.7: Distribution of the invariant mass of three jets with full D� simulation
and CAFIX energy corrections (jets identi�ed in Monte Carlo as coming from the
hadronic decay of the top quark) is compared with the prediction from the transfer
function. The comparison is done for events simulated withmt=160 GeV. The mean
and RMS values correspond to the hatched histogram.
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Figure 5.8: Same as Figure 5.7, but now mt=175 GeV.
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Chapter 6

The Method of Analysis.

6.1 Introduction.

In searching for new physics, one is often faced with the challenge of extracting a

small signal from a much larger background. In such situations, it is desirable to use

as many variables as possible to di�erentiate between signal and background events.

In the top studies carried out by D�[45], or in methods proposed to search for the

Higgs boson [46], a reduced set of variables is used to characterize individual events.

Examples of the variables normally used in such analyses are eigenvalues of the

momentum tensor in an event (e.g., aplanarity), transverse momentum imbalance

(missing ET ), the sum of the scalar ET of jets in an event (HT ), etc. Using Monte

Carlo (MC) techniques, probabilities for an event being background or signal are
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then calculated as a function of these variables, and in the extraction of signals

the events are \weighted" according to these probabilities, for example, by using a

Neural Network discriminant [45].

A reduced set of variables is often chosen because of the expense of generating

enough MC events to get an accurate parameterization of a function of many vari-

ables. For example, for single-lepton tt events, with tt ! W+bW�b ! l� l + qq0bb

(lepton + 4 jets), 15 variables are needed to fully characterize the event. If all 15

variables were used, and only 3 points per variable were sampled, then 315 � 1:4�107

MC events would have to be generated to parameterize the probability.

It is worth pointing out that the MC programs used to generate events for

parameterizing these probabilities, for example for training Neural Networks, already

have such probabilities embedded in the event generator. It can therefore be argued

that the best way to handle situations in which the background cannot be eliminated

by using simple cuto�s, is to use the probabilities provided in the MC. In this way,

all the variables in an event can be used to characterize the event, which maximizes

the input information that goes into the analysis, and can therefore reduce statistical

uncertainties in the measurement of any quantitative feature or parameter.

Our general method will be discussed in Section 6.2. The calculation of prob-

abilities will be addressed in Section 6.3. Section 6.4 will cover the calculation

of the probability for single-lepton tt events. The calculation of background from
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W+jets will be addressed in Section 6.2.4. And, �nally, several examples of analyses

based D� MC events will be given in Chapter 7. For completeness, more details for

selected calculations are included in the Appendices.

6.2 The General Method.

6.2.1 De�nition of Extended Likelihood.

Let us assume that we have a full event speci�ed by a set of coordinates x1 in a

volume dx1, another with coordinates x2 in volume dx2, a third one with coordinates

x3 in volume dx3, etc, as shown in the following sketch:

The coordinates of each xi represent any relevant set of variables that are needed

to specify an event in a unique way. The probability (up to a normalization constant)

for obtaining any con�guration of N observed events within the in�nitesimal phase

space volume elements dxi, containing empty �nite elements �xi, with i = 1; 2; :::; N ,

can be written as
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P (con�guration) =Prob

�
0 events

in �x0

�
� Prob

�
1 event

in dx1

�

� Prob

�
0 events

in �x1

�
� Prob

�
1 event

in dx2

�
::::

(6.1)

Using Poisson statistics, the probabilities for having zero and one event, when

the expected average is n, are

P0;n = e�n and P1;n = ne�n : (6.2)

If N is the number of observed events, and P (x) is the probability density for all

coordinates (which we will not normalize to unity for the most general case), then

the average number of events expected in any volume �x is

n = N

Z
�x

P (x)dx ; (6.3)

and the probability of having 0 events in the region �x is
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P0(�x) = e�N
R
�x

P (x)dx : (6.4)

Similarly, the probability of having 1 event in the di�erential region dx around

x is

P1(x)dx = NP (x)dx e�NP (x)dx : (6.5)

The total probability in Eq.(6.1) will then be given by the product o� all such

terms:

P (con�guration) = e�N
R
V
P (x)dx

NY
i=1

NP (xi)dxi ; (6.6)

where V is the volume of our entire space.

Although a one dimensional sketch was used to motivate Eq. (6.6), the result is

clearly general. If �!x i is a point in a k-dimensional volume (V ), then the probability

for having no events in the volume de�ned by V , but corrected for the in�nitesimal

elements (\holes") around the N points �!x i, is
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e�N
R
V�holes

P (�!x i)d
k�!x i ; (6.7)

and the probability for having one event in each of the N holes is

NY
i=1

NP (�!x i)d
k�!x i e�NP (�!x i)dk�!x i : (6.8)

The multiplication of Eqs. (6.7) and (6.8), yields Eq.(6.6) for the case of many

dimensions. To simplify the notation, the vectorial arrows will be dropped, but the

xi will always refer to a point in a multidimensional space.

P (x1:::xN ) is the probability density for observing the N events characterized

by x1; x2; :::; xN , and it should always be at (or very near) its maximum value. If

this were not the case, then a very di�erent set of events would have been observed.

In most applications, the single-event probability P (x) can be speci�ed only as a

function of some unknown set of parameters �. That set is then estimated by max-

imizing the \extended" likelihood function P (x1:::xN ). Terms that do not depend

on � (e.g. NN ) are usually not included in P (x1; :::; xN ), because they do not a�ect

the values of the parameters � that maximize the likelihood. It can be shown that
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the best (unbiased) estimate of a given set of parameters is obtained through the

maximization of a di�erential likelihood [21]:

L(�) = e�N
R
P (x;�)dx

NY
i=1

P (xi;�) : (6.9)

L(�) usually varies rapidly as a function of �, and consequently it is easier to

maximize lnL. In fact, it is common practice to minimize � lnL:

� lnL(�) = �
NX
i=1

lnP (xi;�) +N

Z
P (x;�)dx : (6.10)

6.2.2 Detector Acceptance Corrections.

Because the parameters are estimated using observed events, P (x) is a \measured"

probability distribution. This probability density receives contributions from all the

processes that lead to the �nal state observed in the detector. For example, an event

with four jets, an electron and missing ET , can be a tt event, or a W + 4-jets, or

a �ve-jet event in which one jet was not properly reconstructed or it uctuated to

mimic an electron, or it can be a W + 3-jets event in which a jet split in two, etc.

In general, the probability that an event is accepted as a candidate for further
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study will depend only on the speci�c characteristics of that event, and it will be

independent of the process that produced it. The measured di�erential probability

can be related to the \production", or inherent, probability distribution P (x; �)

through the acceptance of the detector:

P (x;�) = Acc(x) P (x;�) ; (6.11)

where Acc(x) includes all conditions for accepting or rejecting an event, such as

the geometric acceptance, trigger eÆciencies, reconstruction eÆciencies, selection

criteria, etc. Clearly, the detector acceptance is independent of the � parameters

that are to be estimated. For example, if an electron is detected with a certain

momentum �!pe , the detector should be insensitive to whether the electron came

from a W decay or a Z decay or any other process. The \production" probability

is calculated using the di�erential cross section, summed over all processes that

contribute to the same �nal state, and this is convoluted with the resolution and

acceptance of the detector.

The result of inserting Eq.(6.11) into Eq.(6.10) is
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� lnL(�) = �
NX
i=1

lnP (xi;�) +N

Z
Acc(x)P (x;�)dx : (6.12)

where the term �P lnAcc(xi) has been dropped because it is independent of the �

parameters, and will therefore not a�ect the minimization. The integral in Eq.(6.12)

is calculated using Monte Carlo techniques, where the value of Acc(x) is 1 if the event

is accepted, and 0 otherwise. The integral is sampled through random numbers

generated uniformly in dx, and can be written as:

Z
Acc(x)P (x;�)dx = [

Z
dx]

X
j=accep:

P (xj;�) ; (6.13)

where the sum is over the events accepted in the sample.

To simplify the notation, the speci�c mention of � will frequently be dropped

from our expressions. However, in general, it should be recognized that: 1) the

variables xi used to specify the ith event are constants during the minimization

process, and 2) that P (x) is always a function of the � parameters that are estimated

by minimizing Eq.(6.12).
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6.2.3 Normalizing P (x)

When P (x;�) is normalized to unity, the integral in Eq.(6.10) and Eq.(6.12) can be

dropped. Very often, however, P (x;�) is a complex function of several parameters,

and the normalization usually depends on the acceptance, which has uncertainty.

In such cases, it is unwise to normalize P (x;�) during the minimization process,

but rather to allow the normalization to oat, making it an additional parameter in

the minimization. Nevertheless, the minimization procedure will assure a properly

normalized probability. This can be seen by replacing P (x;�) by cP (x;�) in Eqs.

(6.11) and (6.12), and minimizing with respect to c:

� lnL = �N ln c�
NX
i=1

lnP (xi;�) +Nc

Z
Acc(x)P (x;�)dx (6.14)

@(� lnL)

@c
= �N

c
+N

Z
Acc(x)P (x;�)dx = 0 ) 1

c
=

Z
Acc(x)P (x;�)dx

(6.15)

that is, c = 1R
AccPdx

, which normalizes the probability.
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At times, the normalization parameter may be correlated with the other param-

eters. In such cases, the uncertainties on the parameters � can increase, and it is

therefore advantageous to keep the probability normalized.

6.2.4 Maximum Likelihood for Signal and Background

For analyses in particle physics, it is usually not possible to completely separate

signal events from background. A signi�cant amount of background makes it diÆcult

to extract information about the events of interest.

The maximum likelihood method can be generalized to encompass background

by considering that the probability of observing xi that can originate from several

components:

P (x) =
KX
j=1

�jP (x; j) ; (6.16)

where j = 1; 2; ::; K represent all possible contributions to the total result, and

P (x; j) is the probability of measuring x from a particular type of source of events

j. The normalization constraint gives

81



KX
j=1

�j = 1 (6.17)

The main background for this analysis is from production W+jets. This back-

ground probability was calculated by F.A. Berends, H. Kuijf, B. Tausk and W.T.

Giele, and implemented in a subroutine that is part of VECBOS [48]. We use this

subroutine to obtain the probability of an event being W+jets.

For any event, the probability is now

P (x; c1; c2; �) = c1Ptt(x;�) + c2Pvecbos(x) (6.18)

For each value of � (the mass of the top quark in our analysis), we �nd the

most probable values of c1 and c2, then we search for the most probable mass.

The probability P (x; c1; c2; mt) is automatically normalized after the minimization

process.

6.3 General Calculation of P (x)

If the resolution of the detector is very good, and the beam energies are well known,

then the di�erential probability P (x) for any signal is proportional the di�erential
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production cross section. When the reaction is initiated by partons, and the resolu-

tion of the detector cannot be ignored, then the cross section has to be multiplied

by the parton distribution functions and the detector resolution, and then inte-

grated over the production variables. Following the Particle Data Group (PDG),

the di�erential cross section will be written as [36]:

dn� =
(2�)4jM j2

4
p
(q1:q2)2 �m2

1m
2
2

d�n(q1 + q2; p1; :::; pn) ; (6.19)

where d�n is an element of n-body phase space, qi are the incident and pi the �nal-

state momentum four-vectors, M is the transition matrix element, and m1 and m2

are the masses of the incident partons.

The phase space factor can be written as:

d�n(Q; p1; :::; pn) = Æ4(Q�
nX
i=1

pi)
nY
i=1

d3pi
(2�)3(2Ei)

; (6.20)

where Q is the four-vector for the incident partons, and Ei are the energies of the

�nal state objects. If f(q)dq is the probability that a parton carries a momentum

between q and q + dq, then
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P (x) =

Z
dn�(y)dq1dq2f(q1)f(q2)W (y; x) ; (6.21)

where y = (p1; :::; pn) represents all the variables needed to specify the reaction, and

W (y; x) is the probability of measuring x when y was produced. W equals 1.0 when

the �nal state object is not measured, as is the case for neutrinos, it is a Gaussian-

like function when the resolution is to be taken into account, and it is a Æ-function

for variables that are very well measured.

When any contributing processes can interfere in a �nal state, all their ampli-

tudes must be added coherently. If the processes do not interfere, then jut the

probabilities can be added. Because, in general, it is not possible to distinguish jets

in a tt �nal state, e.g., which jets are b quarks and which are remnants of W ! q0q

decay, the probability must be evaluated for all possible combinations of jets that

comprise the tt �nal state. Thus, the probability must be summed over all pos-

sible combinations, with their respective weights. In general, probabilities for all

processes that can be attributed to the observed �nal state must be calculated and

used in the �nal likelihood. As mentioned previously, the background to tt pro-

duction in the lepton + 4-jets �nal state has contributions from W+ jets and from

all-jets events. However, in this analysis we will calculate the likelihood considering
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only the W+jets contribution to single-lepton tt events. Consequently, P (x) will be

de�ned purely by a sum of the tt signal and the W+jets background.

An explicit treatment of the background from jet production can only improve

the sensitivity of this analysis, and will be developed in the near future.

6.4 Calculation for Single-Lepton tt Events

For tt events observed by CDF and D� [45], the top (antitop) quark decays into

W+b (W�b) in a rapid decay process. This is followed by the W+ (W�) hadronic

ud; cs (ud; cs) or leptonic l+� (l��) decays. The sum of the hadronic modes is

approximately six times the rate for each of the leptonic channels.

When both W+ and W� decay leptonically, the signature involves two isolated

leptons, two jets (b quarks) and missing energy from the neutrinos that are not

detected. These are the so-called dilepton events, and D� observed seven events of

this type in Run I [47].

As mentioned before, when only one W decays leptonicaly, the signature is one

lepton, missing ET , and at least four jets. This signal is not as clean as that for

dileptons, but has better statistics, and the background is far smaller than for the

case when both W+ and W� decay into jets. D� has 29 events that are candidates

for tt in the lepton + jets process [45], and we will concentrate on this sample.
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6.4.1 The Matrix Element jM j2

The square of the matrix element for the production and decay process qq ! tt

! (W+b)(W�b) ! (e�b)(dub) (this process corresponds to 90Tevatron), averaged

over initial quark color and spins, and summed over the �nal colors and spins, is

given by (see Ref. [49]):

jM j2 =g4s
9
FF

�
(2� �2s2qt)�

(1� ceqcdq)� �(cet + cdt) + �cqt(ceq + cdq) +
1
2
�2s2qt(1� ced)

2(1� �cet)(1� �cdt)

�
;

(6.22)

where sij and cij are the sine and cosine of the angle between particles i and j

calculated in the qq center of mass (CM), gs is the strong coupling constant (g
2
s=4� =

�s), � is the top quark's velocity (relative to the speed of light) in the qq CM, and

 = (1 � �2)�1=2. The second line in Eq.(6.22) reects the tt spin correlations. F

reects the production and leptonic-decay kinematics of the top quark (t! W+b!

e�eb):

F =
g4w
4

"
m2

t �m2
e�

(m2
t �M2

t )
2 + (Mt�t)2

#"
m2

t (1� ĉ2eb) +m2
e�(1 + ĉeb)

2

(m2
e� �M2

W )2 + (MW�W )2

#
; (6.23)

86



where ĉeb is the cosine of the angle between e and b in the W+ rest frame, me� is

the invariant mass of the positron-neutrino system, (Mt,�t) and (MW ,�W ) are the

masses and widths of the top quark and W boson, and gw is the weak coupling

constant (GF=
p
2 = g2w=8M

2
W ). Similarly, F corresponds to the decay t! W�b !

dub):

F =
g4w
4

"
m2

t �m2
du

(m2
t �M2

t )
2 + (Mt�t)2

#"
m2

t (1� ĉ2
db
) +m2

du(1 + ĉdb)
2

(m2
du �M2

W )2 + (MW�W )2

#
; (6.24)

where ĉdb is the cosine of the angle between d and b in the W� rest frame, and m2
du

is the invariant mass of the d-u system.

None of the current Monte Carlo programs include tt spin correlations. Since

the examples in this Thesis will deal only with MC events that were generated

without the correlation term in Eq.(6.22), this will also be ignored in our analysis.

Consequently, Eq.(6.22) reduces to:

jM j2 = g4s
9
FF (2� �2s2qt) : (6.25)

It will be assumed that the parton q originated from the proton and q with the
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antiproton. (We are ignoring the gg! tt component that corresponds to � 10�15%

of the yield.) The electron's charge was not measured during D0's Run I, it is

therefore not possible to distinguish between t and t objects. But since s2qt = s2
qt
,

when there is no gluon radiation, to �rst order, Eq.(6.25) is invariant with respect to

the exchange t$ t. Also, in the hadronicW decay, it is not possible to di�erentiate

between the two jets. The wrong combination will give ĉub = �ĉdb, which changes

Eq.(6.24) to

F =
g4w
4

"
m2

t �m2
du

(m2
t �M2

t )
2 + (Mt�t)2

#"
m2

t (1� ĉ2
db
) +m2

du(1 + ĉ2
db
)

(m2
du �M2

W )2 + (MW�W )2

#
; (6.26)

For the Monte Carlo examples in this thesis, the matrix element will be given by

Eq. (6.25), with F [F ] given by Eq. (6.23) [Eq.(6.26)]. Only twelve assignments of

jets to quarks will be relevant, because the combination that interchanges the jets

assigned to the W has been considered already, and the exchange t $ t leaves the

equations invariant. (We will focus on the events that do not have extra jets beyond

the canonical four, which reduces statistics, but also reduces the inuence of event

with any additional gluon radiation.)
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6.4.2 The Measurement Probability W (y; x)

As indicated previously,W (y; x) is the probability of measuring the set of variables x

when the set of variables y was produced. W (y; x) is a Æ-function for quantities that

are well measured, a Gaussian-like function when measurement error is included,

and 1.0 when no measurement is possible (e.g., neutrinos).

The set y represents all the �nal-state particle momenta at the parton level. For

single-lepton tt events y = (�!p quarks;�!p e;�!p �). Since the neutrino is not measured,

x = (�!p jets;�!p e). Because of the excellent granularity of the electromagnetic and

hadronic calorimeters, the angles can be considered well measured. Also, since the

energy of electrons is measured much better than the energy of jets, the momentum

of electrons can also be considered as well measured. Momentum smearing will

be signi�cant for jets. For W ! �� events the muon momentum is often not well

measured. This correction has not been implemented, and should eventually improve

the sensitivity of the analysis.

In this thesis two versions of W (y; x) are used, the di�erence between them

being the way the smearing in jet energies is realized. The �rst one is based on the

standard D� jet energy corrections described in Section 4.3.1. Here W (y; x) is
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W (y; x) = Æ3(�!p e ��!p x
e)

4Y
i=1

1

�i
p
2�

exp
h
�(pi � pxi )

2

2�2i

i 4Y
j=1

Æ2(
j � 
x
j ) (6.27)

where pi = j�!p quarksj refers to the momenta of the produced quarks, pxi = j�!p x
jetsj

to the corrected jet momenta, and 
j and 
x
j are the quark and jet angles. The

variables in Eq.(6.27) refer to the overall pp center of mass.

The other W (y; x) is derived from the transfer function discussed in Chapter 5.

Here the simple Gaussians for the jet energies in Eq.(6.27) are replaced by F (ÆE)

from Eq.(5.3), where ÆE is the di�erence between the uncorrected jet energy and the

parton energy, as de�ned in Chapter 5.

6.4.3 The Phase Space

The details of the phase space for single-lepton tt events are given in Appendix

B, and only the main points will be summarized here. To calculate the probability

P (x) in Eq.(6.21), an integration must be performed over 20 variables, corresponding

to the vector momenta of the six �nal-state particles (four quarks, a lepton and a

neutrino, giving 18 variables), and the longitudinal momenta of the incident partons

(2 varialbles). Inside the integrals there are 15 Æ-functions. Four for total energy

and momentum conservation, eight for the jet angles, and three for the electron's
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momentum vector. The calculation of P (x) therefore involves a �ve dimensional

integral. The integral will be performed numerically, and a judicious choice of the

�ve variables of integration is therefore very important.

A possible choice that would require no transformation of variables would be

the absolute values of the four quark momenta and the longitudinal momentum of

the neutrino. However, this choice has the disadvantage that most of the time the

random sampling would be done where the probability is very small. The reason for

this is that the matrix element jM j2 is negligible, except near the four peaks of the

Breit-Wigners (BW) corresponding to the two top and the two W masses. A better

choice of integration variables would therefore appear to be the top and W masses,

and the absolute value of momentum of one of the quarks. With this choice, the

numerical sampling can be performed only near the BW peaks, and within the limits

of resolution of one of the jets. In fact, the integration function that multiplies the

BW terms is very smooth, so that even a one-point integration is almost accurate

enough to yield a reliable estimate.

As shown in Appendix B, the phase space as a function of (
�!

 jets; �1;M1; m1;M2; m2;�!p e)

is given by:
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d�6 = [Æ(Eq1 + Eq2 �
6X

i=1

Ei)] [Æ(pzq1 + pzq2 �
6X
i=1

pzi )]
d3�!p e

(2�)32Ee

d�1
(2�)32E�

4Y
i=1

�2i d
i

(2�)32Ei

� dm2
1

j2E1
�2
E2
� 2�1cos�12j

dM2
1

j2E1
�3
E3
� 2�1cos�13 + 2E2

�3
E3
� 2�2cos�23j

� dm2
2

j2Ee
pz�
E�
� 2pzej

dM2
2

j2Ee
�4
E4
� 2�ecos�e4 + 2E�

�4
E4
� 2��cos��4j

=
4

(2�)4
�6 [Æ(Eq1 + Eq2 �

6X
i=1

Ei)] [Æ(p
z
q1
+ pzq2 �

6X
i=1

pzi )]

� d3�!p e d�1dm
2
1dM

2
1dm

2
2dM

2
2

4Y
i=1

d
i

(6.28)

with

�6 =
4

(4�)14
1

EeE�

4Y
i=1

�2i
Ei

� 1

jE1
�2
E2
� �1cos�12j

1

jE1
�3
E3
� �1cos�13 + E2

�3
E3
� �2cos�23j

� 1

jEe
pz�
E�
� pzej

1

jEe
�4
E4
� �ecos�e4 + E�

�4
E4
� ��cos��4j ;

(6.29)

where �i = j�!p i
jetj, mi =M i

W and Mi = mi
t (event masses).
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6.4.4 Calculation of P(x) for tt Events

Combining all the pieces, the di�erential probability P (x) for single-lepton tt events

can be written as:

Ptt(x) =

Z
dn�(y)dq1dq2f(q1)f(q2)W (y; x)

=

Z
(2�)4jM j2f(q1)f(q2)W (y; x)

4
q
(q1 � q2)2 �m2

q1
m2

q2

d�6dq1dq2

=

Z
jM j2 f(q1)jq1j

f(q2)

jq2j W (y; x) �6 d�1dm
2
1dM

2
1dm

2
2dM

2
2

� Æ(jq1j+ jq2j �
6X

i=1

Ei) Æ(q1 + q2 �
6X
i=1

pzi ) dq1dq2d
3�!p e

4Y
i=1

d
i :

(6.30)

The masses and transverse momenta of the initial partons were neglected in the

�nal step of Eq.(6.30). The qi therefore stand for the longitudinal momenta of the

incident partons. The integration over q1 and q2 eliminates the two Æ-functions in

Eq.(6.30). Integration over the momenta of the electrons, and over the solid angles

of jets, eliminates the Æ-functions associated with W (y; x) (see Eq.(6.27)).

Since there is no way to know which jet is associated with which quark, all

possible combinations that can lead to the observed �nal state in the detector must

be included in the calculation. In addition, there are generally two neutrino solutions

to the kinematics, both of which must be also included. The �nal expression for the
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tt probability is given by:

Ptt(x) =
X

comb & �

Z
d�1dm

2
1dM

2
1dm

2
2dM

2
2 jM j2

f(q1)

jq1j
f(q2)

jq2j �6

4Y
i=1

1

�i
p
2�

exp
h
�(�i � pxi )

2

2�2i

i

(6.31)

The sum is over the 12 possible assignments of jets and quarks, and over the two

neutrino solutions (consistent with energy and momentum conservation).

The integration over the mass variables in Eq.(6.31) is done using Gaussian

integration with a Breit-Wigner kernel, and the integration over �1 is performed

using adaptive Gaussian integration.
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Chapter 7

Performace of the Method in

Simulated Experiments.

In this chapter, our procedure will be tested using an ensemble of experiments

simulated with a Monte Carlo (MC) technique. In Section 7.1 and 7.2, we will

describe the simulated event samples, and in Section 7.3 we will study the response

of the method using ensemble tests.

7.1 MC Samples De�ned in this Analysis.

For this analysis, the event selection will be base in the \precut" sample de�ned

in the published D� measurement of the mass of the top quark in single-lepton tt
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events. The selections for this sample are:

� jets: �4 jets, Ejets
T > 15 GeV and j�jetsj < 2

� leptons: Elepton
T > 20 GeV, j�ej < 2 and j��j < 1:7

� missing ET > 20 GeV

� W selections: EW
T > 60 GeV and j�W j < 2

Because at this point our method can only deal with events with 4 jets, we have

to restrict the sample further, and choose only those events that have exactly 4 jets.

This extra selection criterion reduces our sample by an additional 30% relative to

the precut sample. This is true for both signal and background, and means that

the ratio of signal over background will remain approximately constant. The precut

sample in the D� data has 91 events, which gives 64 events with extacly 4 jets.

The previous analysis used events in the precut sample that had a �2 < 10 for

the kinematic �t to a tt hypothesis. This reduced the sample from 91 to 77 events.

Because we do not use kinematic �tting, we do not need this selection criterion here.

Using Neural Network (NN) analysis, D� found 29 good tt events in the sample

of 77 events. The rest was supposedly background, composed of 80% W+jets, and
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20% multi-jet production, which we will refer to as \QCD". According to this break-

down, we de�ne the size of Sample 1 as follows:

91

77
�0:70[29(S) + 48(B)] = 24(S) + 40(B) (7.1)

40(B) = 32(W+jets) + 8(multijets or \QCD") (7.2)

The W selections in the \precut" sample were introduced for two reasons. The

j�W j < 2:0 selection was applied because outside of that region the agreeement

between the W+jets simulation (VECBOS) and the W+jets data was very poor.

The selection EW
T > 60 GeV was used to reject the multijet background. The size

of Sample 2 in this analysis is de�ned by loosening the W requirements, as follows:

� 24
0:62

= 39 (signal events)

� 32
0:51

= 63 (W+jets)

� 8
0:22

= 36 (QCD)

Where the denominators determining the number of events of each kind correspond

to the e�ect of the W selections for each event-type, and the numerators are the

numbers estimated for Sample 1 in Eq.(7.2).
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7.2 Event simulation.

All the simulated event samples are the same as generated previously for use in the

published measurement of the mass of the top quark by D� [45], and are character-

ized below.

� Signal.

The tt events were simulated using the Herwig event generator [51]. Samples

were generated for top-quark masses of 140, 170, 175, 180 and 190 GeV. The

events where then passed through the D� detector simulation.

� W+jets background.

TheW+jets background was simulated using the VECBOS Monte Carlo event

generator [52], and also processed through the D� detector simulator.

� Multijet background.

This background corresponds to QCD processes were one of the jets mimics

an electron. There is no reliable(precise) QCD event generator, and for this

reason data was used to characterize this background. QCD events without

good electrons in the �nal state were selected from the data, and the electron

identi�cation criteria were loosened to provide false electrons. This de�ned a

multijet sample, with one jet mimicking an electron, and this is what was used
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for simulating background from multijet production.

7.3 Test of Linearity.

As a �rst step to test the performance of our method, we studied the dependence

of the output (extracted) mass as a function of the input mass of the top quark

(\linearity"). For this purpose, we used tt single-lepton events generated at dif-

ferent values of the mass of the top quark (mt). Ignoring background, samples of

1000 events were analyzes using the likelihood method discussed in Chapter 6. For

each sample, the most probable value of mass of the top quark was extracted by

maximizing the likelihood.

Using the standard D� corrections decribed in Section 4.3.1, the most probable

value of the mass of the top quark was extracted for samples of 1000 tt events

generated with masses for the top quark of 160, 175 and 190 GeV. The results are

plotted as a function of the generated mass in Figure 7.1. A linear �t shows that the

response does not have a slope of 1.0, which would be expected for the ideal case.

The same linearity test was also performed using the transfer functions described

in Chapter 5, the results are ploted in Figure 7.2. Here, a linear �t shows that the

reponse is consistent with a slope of 1.0.

Because we obtained a slope of unity using the transfer function, we conclude
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Figure 7.1: Most probable values of the mass of the top quark obtained for simu-
lated experiments of 1000 events, generated with a mt=160, 175 and 190 GeV. The
standard D� jet energy corrections were used in this study.
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that the slope of 0.86 obtained in Figure 7.1 is a feature of the standard D� energy

corrections, and not of the method. This means that it is important not just to

correct the mean value of the jet energy to obtain the correct mean for the parton

energies (as done in the standard D� corrections), but to consider the distribution

of the di�erence in energies, as discussed in Chapter 5.

In what follows in this chapter, we will describe ensemble tests using the standard

D� corrections in Sections 7.4 and 7.6. In Section 7.6, an ensemble test will be

performed using the tranfer functions.

7.4 Ensemble Tests with Sample 1.

To test the performance of the new method, experiments were simulated with 24

signal (tt), 32 W+jets and 8 QCD events (according to Section 7.1). An equal num-

ber of electron and muon events were used for the signal and W+jets background.

A mass of the top quark of 175 GeV was used to generate these experiments. (The

muon events were treated as if they had the resolution of the electron samples.)

For each experiment, the events were combined in one likelihood function, and

the most probable value of the mass of the top quark obtained maximizing the

likelihood as described in Chapter 6. Examples of likelihood functions for four such

experiments are shown in Figure 7.3.
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Figure 7.2: Most probable values of the mass of the top quark obtained for simulated
experiments of 1000 events, generated with a mt=160, 170, 175, 180 and 190 GeV.
The complete transfer functions were used in this study.
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Figure 7.3: -ln(Likelihood) for 4 Monte Carlo experiments with 24 signal events and
40 background events, all generated at Mt = 175 GeV. The numbers in parentheses
indicate the most probable value of the mass of the top quark for each experiment.
The x-axis on the plots has been o�set to give the minimum always around x = 0
and a constant was subtracted to the likelihood function for convenience.
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The distribution of the most probable mass for each experiment is shown in

Figure 7.4. For each experiment, an estimation of the uncertainty in the extracted

mass is obtained from the width of the likelihood function (one standard deviation

on the mass corresponding to a 0.5 change in the logarithm of the likelihood). Using

this estimation, the signi�cance of the di�erence between the most probable mass in

each experiment and the generated (input) top-quark mass can be calculated, the

distribution in this \pull" parameter is also shown in Figure 7.4. The distribution

in the uncentainties for each experiment is shown in Figure 7.5.

The width of the distribution in Figure 7.4 represents the expected statistical

uncertainty that this analysis technique will provide when used to extract the mass

of the top quark in D� Run I data. The RMS of 5.3 GeV, divided by the slope of the

response curve 5:3=0:86 = 6:5 GeV, should be compared with 8.0 GeV, obtained in

the corresponding ensemble test for the Neural-Network analysis published by D�.

This result suggests that, compared to the previous analysis of the same data, there

is a signi�cant reduction expected in the statistical uncertainty on the extracted

mass, compared to the previous analysis of the same data.

The fact that the pull distribution in Figure 7.4 gives an RMS consistent with

1.0, means that our estimations of the widths of the likelihoods for single events

are reasonable. Several aproximations have been made in our likelihood calculation

(e.g., perfect measurement of jet angles, perfect measurement of energies of electrons
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Figure 7.4: Esemble tests with Sample 1. The upper plot shows the results for the
most probable mass extracted in di�erent MC experiments, and lower plot shows
the pull distribution in the mass.
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Figure 7.5: Esemble test with Sample 1. The displayed statistical uncertainty is
obtained from the width of the likelihood for each experiment.

and muons), and our preliminary results suggest that these are also approximately

valid.

7.5 Ensemble Tests with Sample 2.

Sample 2, de�ned in Section 7.1, has similar selection criteria as Sample 1, but

without the extra W requirements. This gives an expected number of 40 signal, 63

W+jets, and 61 multijet events for each experiment. Another series of ensemble

tests was performed assuming these statistics.

The distribution in the most probable masses for experiments using Sample 2
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Figure 7.6: Esemble test with Sample 2. The upper plot shows the results of the
most probable mass obtained in di�erent experiments, and the lower plot shows its
pull distribution.
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is shown in Figure 7.6, together with the pull distribution in the extracted mass.

The distribution in the statistical uncertainty for each experiment is displayed in

Figure 7.7. The width of the distribution in the most probable masses is 3.6 GeV.

This should be compared to 5.6 GeV obtained for Sample 1. This improvement

suggests that the additional selections on the W should be studied further to judge

the possibility of loosening them. This is problematic because the the W+jets

background would have to be understood in a region were the VECBOS simulation

does not reproduce theW+jets data very well, as discussed in Ref. [45]. In addition,

the impact of the multijet background, for which there is no precise simulation, will

also have to be studied in greater detail.

7.6 Esemble Tests with Sample 1 and Transfer

Functions.

Thus far, all the sets of simulated experiments used the standard D� corrections. As

indicated before, these corrections have the de�ciency that they provide a response

slope on 0.86, which can be improved when using the transfer functions of our

method.

A set of simulated experiments of Sample 1 were analyzed as before, using the
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Figure 7.7: Esemble test with Sample 2. The displayed statistical error is obtained
from the width of the likelihood for each experiment.

same method, but now with the transfer functions intead of the D� energy cor-

rections. The distribution for the most probable mass of the top quark in each

experiment is shown in Figure 7.8. The width of this distribution is 5.0 GeV, and

because the response slope is 1.0, there is no correction required to this width, and

it can be compared directly with the 8.0 GeV obtained in the published analysis.

Using the transfer function to account for the energy smearing of the partons in

the hadronization process, therefore o�ers an improvement in the result, reducing

signi�cantly the expected statistical uncertainty on the mass of the top quark in

Run I data. However, these transfer functions were derived using simulated events,
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and a study is therefore required to determine if the procedure is consistent with

the observations in the data. This will be checked in the near future on samples of

+jet and Z+jets events.

7.7 Measurement of the Mass of the W boson.

Once the probability is calculated, the likelihood can be expressed as a function of

any parameter in the di�erential cross section. Thus far, we have considered the

likelihood only as a function of the mass of the top quark, with all other parameters

�xed to their expected values. In this section the likelihood will be maximized as a

function of the mass of the W boson (MW ), in order to check the output value of

MW .

We will concentrate on the hadronic decay, which will reect the validity of our

jet energy corrections. An example of the likelihood as a funtion of MW in the

hadronic channel is shown in Figure 7.9 for a sample of 40 tt MC events. A total of

1000 Monte Carlo experiments, each with 24 tt events, were generated to determine

the mass of theW boson in the hadronic branch of the top decay, and the results for

a �xed value of Mt = 175 GeV are shown in Figure 7.10. Although a detailed study

of the power of the method to con�rm MW still remains to be demonstrated, the

example shows excellent potential for performing an internal check of jets energies
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Figure 7.8: Esemble tests with Sample 1 using the transfer functions to account
for the hadronization process. The hatched histogram is the distribution of most
probable masses for each experiment, the Gaussian curve �tted to this distribution
has a �=5.5 GeV and is also shown here. The other Gaussian in the plot, with �=8.0
GeV and the same total area, corresponds to the results obtained in the previous
analysis by D� [45] and is here only to compare the result of this test with those of
an equivalent test done for the Neural Network analysis.
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in the measurent of tt events.
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Figure 7.9: Two examples of likelihood as a function of the mass of the W boson in
the hadronic channel for a sample of 24 signal tt events with no background.
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Figure 7.10: Ensemble tests for the determination of the mass of the W boson in
the hadronic branch of the tt event. Each experiment is simulated using 24 signal
tt events and no background, with Mt = 175 GeV.
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Chapter 8

Conclusions

In this dissertation we have described a new technique developed to obtain the mass

of the top quark (mt) in tt events, in which one of the top (t) quarks decays into

a lepton (either an electron or a muon), a jet from a b quark and a neutrino, and

the other t decays into three jets (one from a b quark and two from the decay of the

W into light quarks). The technique has been demonstrated to work very well with

Monte Carlo events (in Chapter 7).

There is still much to be done in several areas in order to gain a better under-

standing of the e�ect of the background on the mass response of the analysis (see

Section 7.3), the impact of the changes in jet energy scale in the data when using the

transfer functions (see Chapter 5), and the nature of the systematic uncertainties

(not discussed in this thesis). Nevertheless, there is good evidence that this method
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can yield a more precise measurement of the mass of the top quark with the existent

D� data collected during Run I at the Tevatron.

Our technique also has potential for checking the mass of the W boson (mW ) in

the hadronic decay modes of the W in tt events. A detailed study of this issue is

yet to be performed, but the evidence in Section 7.7 suggests that a measurement

is feasible with the existing data. This would improve the understanding of the

jet energy scale and, in that way, reduce the current systematic uncertainty in the

measurement of the mass of the top quark.

In order to avoid bias, it was decided not to use the tt data from D� to tune

the new analysis. As discussed in Chapter 7, all studies were performed with Monte

Carlo simulated experiments. Nevertheless, when we �rst presented these studies

to the D� collaboration, we processed the tt data through the preliminary analysis

package, to check that results from the MC were consistent with those from data.

This was done using the standard D� jet energy corrections, and the results are

shown in Figure 8.1. The �rst two plots, in the upper part of the �gure, show the

likelihood as a function of mt and mW for a set of 46 electron+4 jets events in the

D� sample. The quoted uncertainties correspond to changes of 0.5 in the logarithm

of the likelihood functions. The lower part of Figure 8.1, has the same analysis,

but now also including 41 events with muon + 4 jets. ( As mentioned in Chapter

6, the resolution in the muon momentum measurement has not yet been taken into
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proper account.) These results should not be regarded as D�'s measurement of mt

and mW , but only as an indication that the data behave in a way similar to MC

simulations. (The statistical uncertainty reported by D� for the currently accepted

and published analysis of lepton + jets events is Æmt = 5:6 GeV.)

Other measurements at D� can also be improved with this technique. In partic-

ular, a measurement of theW helicity in tt events can be performed if the likelihood

is maximized for the value of the helicity parameter instead ofmt, and D� is already

pursuing this possibility [50].

In this thesis, we have proposed a method for extracting the mass of the top

quark using all the measured variables in tt events. We consider this the most

eÆcient way to extract such information and to separate signal from background

in an interesting group of events immersed in a larger sample of background. The

technique should be considered in approaching similar problems of this kind. In

particular, searches for the Higgs boson in Run II at the Tevatron should provide

an interesting opportunity to apply this method.
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Figure 8.1: Top left(right): Likelihood as a function of mt(mW ) for 46 e + 4 jets
events in the D�Run I data. Bottom left(right): Likelihood as a function ofmt(mW )
for 46 e+4 jets and 41 muon+4 jets events in D� Run I data.
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Appendix A

Understanding the improvement

in the calculation of the top-quark

mass using the full matrix element

A.1 Introduction

The method presented in this thesis suggests that an improvement in the measure-

ment of the mass of the top quark can be realized relative to previous methods. Such

an improvement raises the natural question as to which feature of the new technique

is primarily responsible for the di�erence? This is the question we address in this

Appendix [53].
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A.2 The model.

A simple example was developed to understand the exact origin of the statistical

improvement. This model consists of simulated events, in which each measurement

is characterized by a Gaussian probability distribution.

Associated each event i there is a probability distribution for the variable x de-

�ned by two paramenters, the width �i and a mean xi. The width �i is generated

randomly with a Gaussian probability with mean < �i >= a and a standard de-

viation Æ�i = b. Once �i is determined for an event, the mean of the probability

distribution for that event is selected randomly with another Gaussian distribution

with mean < xi >= 1 and width �i. In this way, a probability distribution for the

variable x in the event i is constructed

Pi(x) =
1p
2��i

exp
�(x� xi)

2

2�2i
; (A.1)

with each event normalized to unit area.

A.3 Two possible paths for the analysis.

Two di�erent ways to estimate the mean value < x > of the one dimensional dis-

tribution of xi will be studied, using samples of 30 events, that is, i = 1; 2; 3; :::; 30
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.

Method I de�nes xi as the most probable value of x given by the maximum of

Pi(x) de�ned in Eq. A.1. The estimator XI of < x > becomes simply the average

of all the xi in the sample of events:

XI =
1

30

30X
i=1

xi : (A.2)

Method II uses not only the xi, but also the width of the distribution. All the

probabilities for a sample of events are multiplied together giving a probability for

the whole sample

L(x) =
NY
i=1

Pi(x) : (A.3)

The value XII, where the probability reaches its maximum (L(XII) = Lmax ), is

then the estimator of < x >.

Although the procedure would be correct for any resolution function, when Pi(x)

is Gaussian, this method is equivalent (and agrees with) the simpler prescription of

weighting:

< x >=

P
xi(

1
�2i
)P

( 1
�2i
)

(A.4)
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A.4 The result.

As we mentioned, the tests of this simple model are always performed considering

samples of 30 events. Each of these samples is called an experiment, and an estimator

of < x > is obtained for each experiment, with both methods described in Section

A.3. The dispersion in the results of a set of experiments provides a measure of the

uncertainty of a single experiment.

The �rst test is performed assuming that all the events have the same width of

�i = 0:2, for i = 1; 2; 3; :::; 30. The results are shown in Fig. A.4. As expected, there

is no di�erence at this point between the results for the two techniques.

The next, and more interesting, test is performed for events with di�erent un-

certainties. For each event, a mean xi value and its uncertainty are determined as

explained in Section A.2, assuming a = 0:2 and b = 0:1. The result for the two

methods are shown in Fig. A.4. A clear reduction in the dispersion is achieved

when Method II is used instead of Method I.

A.5 Conclusion.

Method I treats every event in a way similar to that in Ref.[45], where a �tted

mass was obtained for each event, and the information on the uncertainty for each

particular event was ignored.
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Figure A.1: Histrograms of estimators of < x > obtained from 80 samples of 30
events using Method I (top) and Method II (bottom). All events have the same
width for their probability distributions. As expected, the plots show no di�erence
between these two procedures.
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Figure A.2: Histrograms of estimators of < x > obtained from 80 samples of 30
events using Method I (top) and Method II (bottom). The input events have large
di�erences in uncertainties.
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Figure A.3: Histrograms of estimators of < x > obtained from 80 samples of 30
events using Method I (top) and Method II (bottom). The input events have small
di�erences in uncertainties.
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Method II, on the other hand, is similar to the analysis technique in this thesis.

A probability is obtained as a function of the mass of the top quark for each event,

and the probability functions for all the events in the sample are then combined, as

in Eq. A.3.

A clear di�erence in the dispersion follows from the e�ective weighting by the

uncertainty of the measurement. This additional information implemented in the

analysis in this dissertation is the likely reason for the improvement over Ref. [45].

Thus, the di�erence resulting between the two analyses in this simple example

is totally consistent with the fact that in a sample of measurements of a random

variable, where each measurement has a di�erent uncertainty, the optimal estimator

of the mean is not a simple average, but rather a weighted one.

For the case of tt events, di�erent con�gurations can have di�erent measurement

errors, and yield probability distributions that are often not even symmetric. The

calculation of a probability as a function of the mass of the top quark for individual

events is one way to take this di�erence into proper account.

We have not speci�ed to what extent the uncertainty on the mass varies for the

tt events observed by D� and used in the analysis of Ref. [45]. Clearly, if the

variation in the uncertainty is small, then the di�erence between the two techniques

is less important. To ilustrate this point another test was done, identical to the one

in Fig. A.4, but now taking b=0.05. The results are shown in Fig. A.4.
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Appendix B

Phase Space Calculation for Single

Lepton tt Events

For q1q2 ! tt events like the one in Fig.B.1 the Lorentz invariant phase space (see

Ref. [21]) is characterized by the particles momentum (�!p q0s;�!p e;�!p �).

d�6(q1 + q2; p1; p2; p3; p4; pe; p�) = Æ4(q1 + q2 �
6X
i=1

pi)
6Y
i=1

d3�!p i

(2�)32Ei
: (B.1)

As was discussed in subsection 6.4.3 to integrate the probability it is very con-

vinient to change variables from the particles momentum to (
�!

 jets; �1;M1; m1;M2; m2;�!p e),

where
�!

 jets is the jet's solid angle, �i = j�!p jetij is the module of the momentum of

the i-th jet, and (M;m) are the top and W masses.
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Figure B.1: Feymann diagram for the single-lepton tt event.

One way to perform the transformation of variables is by calculating the Jacobian

of the transformation. A simpler way is to use the recursive character of the phase

space as described in Ref. [21] . The idea is to 1) group particles into a composite

particle, 2) introduce a mass delta for the composite particle, and 3) integrate the

delta over the variables of individual particles. The all hadronic branch gives

3Y
i=1

d3�!p i

(2�)32Ei
= Æ(p2W1

�m2
1)dm

2
1 Æ(p

2
t1 �M2

1 )dM
2
1

3Y
i=1

d3�!p i

(2�)32Ei

=
dm2

1 dM
2
1 d�1���@p2W1

@�2

��� ���@p2t1@�3

���
3Y

i=1

�2i d
i

(2�)32Ei

(B.2)

in the last step the deltas were integrated with respect to �2 and �3 using the
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relation:

Z
f(x)Æ[g(x)]dx =

f(a)

jg0(a)j ;with g(a) = 0 : (B.3)

The value of the partial derivatives is

@p2W1

@�2
=

@(p1 + p2)
2

@�2

=
@

@�2
(m2

1 +m2
2 + 2E1E2 � 2�1�2cos�12)

= 2E1
�2
E2

� 2�1cos�12

(B.4)

and

@p2t1
@�3

=
@(p1 + p2 + p3)

2

@�3

=
@

@�3
(m2

1 +m2
2 +m2

3 + 2 p1 � p2 + 2E1E3 � 2�1�3cos�13 + 2E2E3 � 2�2�3cos�23)

= 2E1
�3
E3
� 2�1cos�13 + 2E2

�3
E3
� 2�2cos�23 :

(B.5)

For the lepton branch the integration of the deltas is done over �4 and the
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neutrinos longitudinal momentum pz� . The derivatives are

@p2W2

@pz�
=

@(pe + p�)
2

@pz�

=
@

@pz�
(m2

e +m2
� + 2EeE� � 2pzep

z
� � 2�!p t

e � �!p t
�)

= 2Ee
pz�
E�
� 2pze

(B.6)

and

@p2t2
@�4

=
@(pe + p� + p4)

2

@�4

=
@

@�4
(m2

e +m2
� +m2

4 + 2 pe � p� + 2EeE4 � 2�e�4cos�e4 + 2E�E4 � 2���4cos��4)

= 2Ee
�4
E4
� 2�ecos�e4 + 2E�

�4
E4
� 2��cos��4 :

(B.7)

Finally two of the deltas in Eq.B.1 are integrated with repect to the neutrinos

transverse momentum giving a value of one. The other two deltas will be inte-

grated later with respect to the initial parton's logitudinal momentum and energy.

Combining everything together the phase space for tt events is
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d�6 = Æ(Eq1 + Eq2 �
6X
i=1

Ei) Æ(pzq1 + pzq2 �
6X

i=1

pzi )
d3�!p e

(2�)32Ee

d�1
(2�)32E�

4Y
i=1

�2id
i

(2�)32Ei

� dm2
1

j2E1
�2
E2
� 2�1cos�12j

dM2
1

j2E1
�3
E3
� 2�1cos�13 + 2E2

�3
E3
� 2�2cos�23j

� dm2
2

j2Ee
pz�
E�
� 2pzej

dM2
2

j2Ee
�4
E4
� 2�ecos�e4 + 2E�

�4
E4
� 2��cos��4j :

(B.8)
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